Using PROMINENCE from notebooks
Since all interaction with PROMINENCE is via a REST API it is straightforward to use PROMINENCE from any Jupyter notebook. See here for more information on using PROMINENCE from Python.
Simple example
Firstly install the PROMINENCE CLI:
!pip install prominence
Set the two required environment variables:
%env PROMINENCE_URL=https://<prominence-server>/prominence/v1
%env PROMINENCE_OIDC_URL=https://<prominence-oidc-server>
Here <prominence-server>
and <prominence-oidc-server>
should be replaced as appropriate.
Import the required module:
from prominence import ProminenceClient
Instantiate the PROMINENCE Client class, and obtain a token:
client = ProminenceClient()
client.authenticate_user()
As usual, you will be asked to visit a web page in your browser to authenticate. Note that the token retrieved is stored in memory and is not written to disk. If the token expires you will need to re-run client.authenticate_user()
.
Construct the JSON job description. In this example we use OSPRay to render an image:
# Required resources
resources = {
'cpus': 16,
'memory': 16,
'disk': 10,
'nodes': 1
}
# Define a task
task = {
'image': 'alahiff/ospray',
'runtime': 'singularity',
'cmd': '/opt/ospray-1.7.1.x86_64.linux/bin/ospBenchmark --file NASA-B-field-sun.osx --renderer scivis -hd --filmic -sg:spp=8 -i NASA'
}
# Output files
output_files = ['NASA.ppm']
# Input files (artifacts)
artifact = {'url':'http://www.sdvis.org/ospray/download/demos/NASA-B-field-sun/NASA-B-field-sun.osx'}
# Create a job
job = {
'name': 'NASAstreamlines',
'resources': resources,
'outputFiles': output_files,
'artifacts': [artifact],
'tasks': [task]
}
Now submit the job:
id = client.create_job(job)
print('Job submitted with id', id)
See here for the complete notebook for this job, including displaying the output rendered image.